Inexact Inverse Iteration for Symmetric Matrices

نویسندگان

  • Jörg Berns-Müller
  • Ivan G. Graham
  • Alastair Spence
چکیده

In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av = λv. Our analysis is designed to apply to the case when A is large and sparse and where iterative methods are used to solve the shifted linear systems (A − σI)y = x which arise. We rst present a general convergence theory that is independent of the nature of the inexact solver used. Next we consider in detail the performance of preconditioned MINRES as the solver for (A − σI)y = x. In particular we analyse the cost of one solve and then the overall cost of the whole algorithm. Also we present a new treatment of the approach discussed by [18] to set up an appropriate right hand side for the preconditioned system. Our analysis shows that, if MINRES is the inexact solver then the optimal strategy is to let the shift tend to the desired eigenvalue as quickly as possible. In most practical situations that will mean that the shift should be taken as the Rayleigh quotient, just as if direct solves were used. Numerical results are given to illustrate the theory in the paper. AMS subject classification: Primary 65F15, Secondary 65F10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

On Pmhss Iteration Methods for Continuous Sylvester Equations

The modified Hermitian and skew-Hermitian splitting (MHSS) iteration method and preconditioned MHSS (PMHSS) iteration method were introduced respectively. In the paper, on the basis of the MHSS iteration method, we present a PMHSS iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and complex symmetric positive definite/semi-definite matrices. Under suit...

متن کامل

Convergence Theory for Inexact Inverse Iteration Applied to the Generalised Nonsymmetric Eigenproblem

In this paper we consider the computation of a finite eigenvalue and corresponding right eigenvector of a large sparse generalised eigenproblem Ax = λMx using inexact inverse iteration. Our convergence theory is quite general and requires few assumptions on A and M. In particular, there is no need for M to be symmetric positive definite or even nonsingular. The theory includes both fixed and va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003